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Abstract

A new multi-scale technique is presented for characterizing the spatial distribution of second-phase particles in two-dimensional
distributed multi-phase systems. The implications for the characterization of reinforcement distributions in discontinuously
reinforced metallic matrix composite microstructures are discussed, along with results of the analysis both for simulated and
experimental discontinuously reinforced aluminum (DRA) materials. A systematic variation in the degree of spatial heterogeneity
is observed with increasing length scale. This result leads to the definition of the parameter L;; or homogeneous length scale. The
relevance of Ly measured for a real DRA microstructure is then discussed in the context of statistical variations in mechanical
properties such as tensile strength, ductility, and fracture toughness. © 2001 Published by Elsevier Science B.V.
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1. Introduction

Simple scalar descriptions of microstructures have
been quite successful in the previous decades in helping
understand and predict material behavior. Models such
as Hall-Petch, the ‘rule of mixtures’, Orowan, and creep
models such as Harper-dorn, Coble, etc. describe mi-
crostructure by simple scalar quantities such as mean
grain size, average inter-particle spacing, or volume
fraction. Information relating to the spatial distribution
or the distribution about the mean quantity is ignored
in these models. While these approaches have been very
successful in predicting and understanding the behavior
of a wide range of materials, there are materials systems
and properties, where such models do not perform well.
Discontinuously reinforced metallic matrix composites
(MMCs) is one such class of materials.

* Corresponding author. Tel.: + 1-937-2551340; fax: + 1-937-
2553007.
E-mail address: jonathan.spowart@afrl.af.mil (J.E. Spowart).

There is in the open literature a wealth of experimen-
tal and theoretical evidence suggesting that the unifor-
mity of reinforcement spatial distribution plays a key
role in controlling the yield strength [1], ductility [2],
fatigue [3] and fracture [4,5] behavior of discontinu-
ously reinforced MMCs. Although the mechanisms
which control these properties are still quite poorly
understood, and unambiguous evidence of the specific
influence of particle distribution has not been obtained,
there is general agreement that microstructures with
more heterogeneous spatial distributions of reinforce-
ment particles (i.e. ‘clustered’ microstructures) tend to
have poorer mechanical properties. However, a large
part of the problem in linking microstructural hetero-
geneity with mechanical properties is that unambiguous
definitions of fundamental terms required to quantify
spatial distribution, such as ‘homogeneous,” ‘random,’
and ‘cluster’ are not available. In addition, techniques
for characterizing the spatial distribution of reinforce-
ment particles have been slow to develop, and are still
somewhat limited in scope. For example, Schwarz and
Exner [6] measured nearest-neighbor distances in 2-D
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and 3-D, and used this to determine the presence or
absence of clustering. In addition, a number of re-
searchers [2,7—-12] have used tessellation techniques to
divide the microstructure up into space-filling cells,
each containing a single reinforcement particle. The
statistics of the distribution of cell sizes thus produced
were then used to characterize the distribution of parti-
cles. The main objection to these techniques is that it
necessarily assigns a length scale to the problem, i.e.
that of the mean inter-particle spacing, or nearest-
neighbor distance. Aspects of the spatial arrangement
of particles at length scales above this are ignored.
Furthermore, there are practical difficulties associated
with image analysis, specifically with the thresholding
techniques typically used to define boundaries between
the individual reinforcement particles, especially when
the particles are very small, poorly contrasted with the
matrix, or are highly clustered.

Other researchers [13—15] have concentrated on ob-
taining information about particle spatial distributions
based on the acquisition of multi-point correlation
functions. For example, Berryman [15] used image
analysis to obtain the 2-point correlation function of a
2-D section through a synthetic 3-D microstructure
comprising fully overlapping spheres. The level of
agreement between the measured 2-point correlation
function and the available closed-form solutions was
good, therefore validating the technique. The author
goes on to suggest that an interesting problem to tackle
would be the extension of the analysis to cover different
microstructural length scales. Lu and Torquato [13]
demonstrated that the 2-point correlation function
could indeed be used to obtain information about local
volume fractions on several length scales, however the
calculations involved in this approach are quite com-
plex. Work in this area has therefore concentrated
mainly on model systems, for which closed-form solu-
tions of the 2-point correlation function exist.

Fig. 1. Ensemble of points placed at random coordinates within a
plane of area L> (Number of points, N = 1000).

The objective of the current paper is to introduce a
more direct approach for characterizing and analyzing
2-D distributed second phases on multiple length scales,
using simple image analysis techniques and without
obtaining the 2-point correlation function. In addition,
a practical definition for homogeneity will be described.
The methodology will then be applied to the mi-
crostructure of discontinuously reinforced MMCs.
With this technique, information on the distribution of
particles can be obtained at length scales from the
particle diameter up to the specimen size itself. An
advantage of this technique is that it can therefore be
used to analyze the microstructure at length scales
encompassed by many different potential failure mech-
anisms. Additionally, a single mechanism can be cap-
tured operating on multiple length scales. For example,
near-threshold fatigue crack growth is typically associ-
ated with a small plastic zone size compared to the
particle size, whereas fatigue cracks propagating at
large AK can generate a plastic zone that encompasses
many particle diameters [16,17]. The ability to assess
the spatial heterogeneity of the microstructure at many
different length scales is therefore an invaluable tool in
the effort to correlate microstructure with mechanical
properties in distributed multi-phase systems such as
discontinuously reinforced MMCs.

1.1. Point counting techniques

Statistical techniques based on counting the numbers
of points in different sized sub-areas within a large field
can be an effective tool for measuring levels of spatial
variability in the distribution of points [18-21]. For
example, Fig. 1 shows an ensemble of N = 1000 points
placed at random within an area L>. If one divides up
the area L2 into smaller areas (‘quilt squares’) of side
length Q, then the statistical variability in the numbers
of points counted in each individual quilt square can be
used to measure the spatial variability of the whole
ensemble. Furthermore, if we assume that the points
are placed at coordinates chosen entirely at random
within the area L? then the numbers of particles
counted in individual quilt squares should follow
Poisson! statistics [22]. In which case, the individual
point counts will follow the distribution function given
in Eq. (1).

n} exp(—n)

pln) ===P =, M
n;!

Here, p(n;) is the probability of counting n; points

within a quilt square and » is the average number of

particles counted in each square, ie., n=2X,n,p(n,).

! We must also assume that the total number of points counted in
any quilt square will be small and will also be independent of the
number counted in any other quilt square.
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Fig. 2. Plot showing relationship betgween ¢, /n and Q/d, for differ-
ent area fractions (0.1%, 1.0%, 10%), according to Eq. (4).

Obviously, n will scale with the second power of the
chosen quilt size, Q, and linearly with the overall
number density of points. Additionally, for a Poisson
distribution of point counts the following relationship is
also true:

NG )

where, ¢, is the population standard deviation for
individual point count values.

1.2. Particle counting techniques

In order to apply the above treatment to a mi-
crostructure containing discrete, non-overlapping parti-
cles, we must first take into account the particles’ finite
size. If we assume that the particles are small and that
the area fraction that they cover is low, then their
centroid coordinates will be largely uncorrelated and
Poisson statistics will still be appropriate. For mono-
sized particles of diameter d, we can therefore write the
following:

2

n= < 20 ) Ay, 3)
Jd,

where Q is the length of the quilt square side, and A, is

the area fraction covered by the particle ensemble. By

substituting Eq. (3) in Eq. (2), and rearranging, we

obtain:

o.n_ L 0.5 g —1
c) @)

This relationship is plotted in Fig. 2, for area frac-
tions from 0.1% to 10%.

At any given quilt size, Q, Eq. (3) predicts a linear
relationship between n and A, Therefore Eq. (4) can
also be rewritten in terms of localized area fraction
statistics as Eq. (5) below:

UAf_ L 0.5 g —1
o) (@)

Although Eq. (5) is similar in form to the “coarseness
parameter” as derived from the 2-point correlation
function by Lu and Torquato [13], additional work will
be necessary in order to ascertain whether the two
relationships are functionally identical. This work will
form the basis of a follow-on paper.

2. Multi-scale analysis of area fractions

The ability to obtain statistical information about the
variability of reinforcement particle area fractions over
various different length scales forms the basis of a
flexible, multi-scale analysis for spatial heterogeneity in
distributed multi-phase systems. In order to assess the
applicability of the multi-scale analysis of area fraction
(MSAAF) technique for characterizing spatial hetero-
geneity, large numbers of statistically similar mi-
crostructures must be analyzed. Rather than relying on
the time-consuming technique of obtaining multiple
plane sections through actual particle-reinforced mi-
crostructures, it was found to be more efficient to
simulate individual particle spatial distributions using a
series of specially developed computer codes [23-25].
Subtle differences between particle distributions could
then be introduced in a controlled manner.

2.1. Construction of synthetic microstructures

The computer code utilized for the production of the
synthetic microstructures was able to take a population
of 2-D particle sections (disks) and place them, one at
a time, at specific X—Y coordinates within an image
plane of known size. This resulted in a synthetic mi-
crostructure with a predetermined area fraction and
number of particles. A random number generator was
used to select the coordinates at which a new particle
was to be placed. These particle coordinates were re-
jected if the new particle overlapped with an existing
particle, and new coordinates were chosen. The process
was repeated until all the particles were placed on the
image. Fig. 3 shows an example of a synthetic mi-
crostructure produced in this way, containing 1000
monosized particles at an area fraction of 10%.

It is important to realize that the resulting spatial
distribution of particle centroids is not truly random, as
the particles are consistently placed so that they do not
overlap. However, this effect only becomes significant
at the highest area fractions (Section 2.3).

2.2. Multi-scale analysis of area fraction by digital
image re-sampling

The procedure that was developed for characterizing
the multi-phase microstructures is best described as a
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Fig. 3. Synthetic microstructure utilizing random, non-overlapping
particle placement (area fraction of particles, 4= 10%, number of
particles, N = 1000).

digital image re-sampling technique. Microstructural
images that are obtained either from digital microscopy

or by direct computer simulation are re-sampled by
replacing groups of adjacent pixels with a single (larger)
pixel. The gray level of the new pixel is assigned based
on the mean gray level of the pixels being replaced.
This process is repeated at successively coarser length
scales, simply by decreasing the pixel resolution of the
image, as shown in Fig. 4(a)—(d). In this procedure, the
statistics of local area fractions are obtained by measur-
ing the gray level in each individual quilt square (i.e.
pixel) of the re-sampled image.? Note that although the
mean area fraction of each re-sampled image remains
constant, the variability in area fraction (pixel values)
about the mean decreases with increasing coarseness of
the re-sampling, i.e., there is a reduction in image
contrast, but not in image brightness as the pixel resolu-
tion is decreased.

Fig. 5 shows how the variability in area fraction
(expressed as the coefficient of variation in area frac-
tion, o, /A4;) changes with increasing quilt size, Q. This
type of plot is subsequently referred to as an MSAAF

(b)

Fig. 4. A series of quilting operations applied to an image containing 1000 particles at an area fraction of 10%. (a) Raw image at a resolution
of 1024 x 1024 pixels, (b) re-sampled at 32 x 32 pixels, (c) resampled at 16 x 16 pixels, and (d) resampled at 8 x 8 pixels.

2 For an 8-bit grayscale image, the area fraction within each quilt
square is equal to measured gray level/256.
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Fig. 5. The non-dimensional variability parameter, o, /4 plotted vs.
the normalized quilt size, Q/d,. The broken sloping line is the
prediction from Eq. (5), assuming Poisson statistics with a vanishing
area fraction. Also indicated on the plot is the point corresponding to
simultaneous solution of Eq. (5) and Eq. (6), at a quilt size Q/d, =
Q*/d,. The original image was 4096 x 4096 pixels. (4;=0.8%, N =
10 000).
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Fig. 6. MSAAF plot, showing effect of increasing area fraction for
random, non-overlapping particle distributions. Small arrows on the
lower right horizontal axis indicate values of L; (Section 2.3.1)
evaluated at o, /4;=0.01 (N =10 000).

plot. After an initially horizontal slope, the plotted
curve shows good agreement between the measured
values of o, t/Ar and the relationship predicted by Eq.
(5) over several orders of magnitude of quilt size, Q.
Note that on this and all subsequent MSAAF plots, O
is normalized with respect to the (mean) particle diame-
ter, d,.

The upper limit for (IAI/Af shown by the broken
horizontal line in Fig. 5 can be determined® from the

3 At small values of 0/d,, the binary image contains only two
populations of pixels (black and white) in proportions 4, and (1 — A4y)
respectively. Eq. (6) is therefore obtained by solving the equation,

2
(TA(

1
= N(E?’f‘f(l —A)?+ E’,&MA%> for this particular case.

area fraction of the original image, according to Eq.

(6):
I_Af 0.5
= ) 6
Q/dp—»() < At‘ > ()

Additionally, the point of intersection of the two
lines given by Eq. (5) and Eq. (6), at a quilt size Q*/d,,,
is given by Eq. (7):

Q* 1—Af 0.5_ T 0.5
o -6 7

For the case of non-interacting, (i.e. randomly
placed) monosized particles at very low volume frac-
tions, Eq. (7) reduces to the following:

Q* _ T 0.5 N T
(e 5 ®

The size of Q*/d, is important because the start of
the linear regime on the MSAAF plot is observed to
scale with this parameter. Q*/d, therefore effectively
defines the length scale below which the MSAAF tech-
nique no longer accurately describes the statistics of the
reinforcement spatial distribution.

T4,

Ay

2.3. Influence of area fraction on random,
non-overlapping monosized particle distributions

Fig. 6 shows the effect on the MSAAF plot of
increasing the area fraction for random, non-overlap-
ping distributions of particles. Each of these mi-
crostructures contained 10 000 monosized particles.
Although the slopes over the linear portions are all
— 1.0, it should be noted that Q*/d, decreases quite
rapidly from the Poisson prediction (Eq. (8)) as 4, is
increased from 0.8% to 20%. This is due to the higher
area fraction random microstructures being less ‘Pois-
son-like’ (i.e. more homogeneous) than the lower area
fraction random microstructures, because of the im-
posed constraint of having non-overlapping particles
(Section 2.4.1).

2.3.1. Defining the homogeneous length scale (L)

The MSAAF plot can be characterized by measuring
the quilt size at which the curve intercepts the lower
horizontal axis at a certain value of g, ‘/Af. This inter-
cept, subsequently referred to as Ly, effectively defines
the length scale above which the local variability in area
fraction is smaller than the specified o, /4. Since rein-
forcement volume fractions in discontinuously rein-
forced composite materials are often specified to + 1%
or better [26], a value of JA‘/Af=0.01 has practical
relevance. For example, the MSAAF curve shown in
Fig. 6 for the random distribution of particles at an
area fraction of A, =20% gives Ly (0.01) = 100 d,,.
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Fig. 7 shows how values of Ly (0.01)/d, measured in
these random, non-overlapping microstructures de-
crease monotonically with increasing area fraction, up
to Ay=45%. Extrapolation of the fitted curve to the
horizontal axis at Ly =0 agrees with the theoretical
limit for 2-D packing of monosize disks (called the 2-D
‘jamming limit’ [27]) at A; ~ 0.547. As the area fraction
approaches the jamming limit, the numbers of different
spatial arrangements available to the particles become
very limited, thus minimizing possible variations in area
fraction.

1000 ———r
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200 \ "jamming limit"
i \0\ A, = 0.5472
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A

Fig. 7. Effect on Ly; of increasing area fraction for random, non-over-
lapping particle distributions (N =10 000). Extrapolation of fitted
curve agrees will with 2-D ‘jamming limit’ for random, non-overlap-
ping circular discs [27].
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Fig. 8. MSAAF plot for simulated microstructures, showing the
variation in ¢, /A, with increasing Q/d, for different values of
clustering factor between f, =0 (i.e. random, non-overlapping) and
f.=10.88 (highly clustered). Small arrows on the lower right horizon-
tal axis indicate values of Ly (0.01). (4,=0.8%, N =10 000).
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Fig. 9. Variation of Ly (0.01)/d,, with increasing clustering factor, f.
The line is a non-parametric curve fit through the data. (4= 0.8%,
N =10 000).

2.4. Multi-scale analysis of area fraction in clustered
microstructures with monosized particles

Often, experimentally obtained discontinuously rein-
forced composite microstructures contain localized re-
gions, where the variation in area fraction of particles is
much higher than would be expected based on random,
non-overlapping particle placement [2]. These ‘clus-
tered’ microstructures can also be simulated by the
computer code described in Section 2.1. The clusters are
formed, when a pre-determined proportion of the parti-
cles are placed as close as possible to existing particle
positions, instead of at random coordinates, again with-
out any particles overlapping. The ratio of the number
of particles that are placed in clusters to the number
that are placed at random coordinates within the re-
maining area is defined as the clustering factor, f..

Fig. 8 shows the relationship between o, JAr and
Q/d, for simulated clustered microstructures having
values of clustering factor between f, =0 (i.e. random,
non-overlapping) and f, = 0.88 (highly clustered). Each
of the microstructures contains 10 000 particles, at an
overall area fraction of A= 0.8%. Even for the highly
clustered microstructures (i.e. f,—1.0) there is still a
quilt size above which the slope becomes — 1, as pre-
dicted by Poisson statistics for the case of random,
non-overlapping particles. The quilt size at which this
occurs increases with increasing f, at a constant area
fraction of reinforcement.

Extrapolation of the curves to the horizontal axis at
JA‘/Af=0.01 yields a value for Ly (0.01)/d,, which
increases systematically with f., as shown in Fig. 9.

2.4.1. Effect of area fraction on spatial heterogeneity
Consider the difference between highly clustered mi-
crostructures with low and high area fractions of rein-
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Fig. 10. Clustered microstructures (a) f, = 0.8, 4,=0.8%, and (b) f. = 0.8, 4;=20%. Both microstructures are shown at the same magnification.

forcements. The former will have the potential for
increased levels of spatial heterogeneity due to the
greater available space in which clusters can form. This
may in turn increase Ly. For example, Fig. 10 shows
two microstructures that have similar levels of cluster-
ing, f. but different area fractions (4;=0.8% vs. A¢=
20%). The microstructure with 4, = 20% was chosen in
order to represent the level of reinforcement volume
fraction typically observed in actual discontinuously
reinforced MMC materials, although in practice, the
particle spatial distributions are usually more homoge-
neous than in this example.

Fig. 11 shows the effect on Ly (0.01)/d, of increasing
the clustering factor for monosize particles with increas-
ing area fractions from the dilute (Poisson) case (4;=
0.8%) up to A¢=20%. From the figure, we can see that
there is a large increase in Ly (0.01)/d,, as we reduce the
area fraction from 20% to 0.8%, especially at the higher
levels of clustering. Conversely, at equivalent levels of
clustering, a microstructure containing a higher area
fraction of particles will be more uniform than one
containing fewer particles. This is simply an effect of
there being less room in which to arrange the particles
as the area fraction is increased, i.e., there are fewer
possible ways of packing in the particles as we ap-
proach the higher area fractions, therefore, large local
variations in area fraction become increasingly unlikely
(Section 2.3.1) irrespective of the imposed clustering
factor.

3. Effect of particle size distribution on spatial
heterogeneity

In the preceding sections, we have relied on the
assumption of having monosized particles. However,
experimental discontinuously reinforced MMC mi-

crostructures will usually contain particles with a distri-
bution of sizes about some mean size. Experimental
particle size distributions are often characterized in
terms of log-normal statistics rather than normal (i.e.
Gaussian) statistics.

3.1. Log-normal statistics for characterizing particle
size distributions

The log-normal probability distribution function [28]
is given in Eq. (9).

1
p(dy)=- exp[—(In d,—In dy)*/b], €
where
a=./2n In o (10)
and
6000_...!.,. O
F | —o—A=0.8% /
5000 1 —o—A =22% /
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[ /‘/ ’ /
1000 e e
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0 0.2 0.4 0.6 1
fe
Fig. 11. Effect of increasing clustering factor, f,, on homogeneous

length scale, Ly (0.01), for different area fractions of monosize
particles. (N =10 000, 4= 0.8%, 2.2%, 10%, 20%).
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Fig. 13. Log-probability plots for two experimental particle size
distributions (Norton F-600 and F-1000 SiC powders). Note straight-
line fit through data, indicating lognormal statistics.

Table 1
Parameters from curve-fitting the F-600 and F-1000 SiC particle size
data, using log-normal statistics®

Parameter F-600 SiC F-1000 SiC
dy (um) 9.4 4.9
In o, (In pm) 0.165 0.210
R 0.9987 0.9988
2 R is the linear correlation coefficient.
b=2In g, (11)

In these equations, p(d,) is the probability of finding
a particle of diameter d,, d, is the geometric mean of
the distribution of d, and o, is the geometric mean
deviation, as defined by the following equations:

l n 1 n
In d, =~ ln<]_[d,->:n[z lnd,], (12)

i=1 i=1

In* g, = nll[ Y (In d;—In dg)z]. (13)
- i=1

These parameters can be put into context using com-
mercially available data for particle size distributions.
Fig. 12 shows cumulative probability plots* representa-
tive of two commercially available SiC powders com-
monly used in the fabrication of discontinuously
reinforced MMC materials (Norton F-600 and F-1000)
[30]. The two parameters d, and o, (which uniquely
describe a log-normal distribution) are obtained by
plotting the cumulative probability data in the form of
a log-probability plot, as shown in Fig. 13. (The
straight line fit through the data is sufficient to indicate
adherence to log-normal statistics [22].)

Table 1 contains the two statistical parameters ob-
tained from Fig. 13, for both particle size distributions,
F-600 and F-1000. We can see that the larger mean
diameter F-600 powder has a narrower distribution of
particle sizes relative to the mean particle size, d,, as
indicated by the smaller value of o, vs. that of the
F-1000 powder. The effect on the MSAAF plot of a
variation in particle size will now be addressed, using
these two distributions of particle size as specific
examples.

3.2. Simulating particle populations

Due to stereological effects [31], there will be a
noticeable difference between the actual distribution of
powder particle diameters and the distribution of mea-
sured particle diameters that results from a random 2-D
section through the discontinuously reinforced com-
posite material. The parameters d, and o, that fully
describe the particle size distributions for the F-600 and
F-1000 SiC powders must therefore be modified in
order to produce an accurate 2-D representation of the
simulated 3-D composite microstructure. If we assume
a log-normal distribution of particle diameters in the
2-D section, we can use the result of Fullman [32] to
obtain the appropriate statistical parameters (d, and o)
for the 2-D distribution, based on the following
observation:

T

d= (14)

2
Here, d is the true average particle diameter, and 7 is
the average of the reciprocals of the particle diameters
in the corresponding 2-D section. Each particle diame-
ter must be reduced by a constant factor (x<1) in
order for Eq. (14) to be true. This factor (which is
found to be a function of d, and ¢,), must be calculated

4 Obtained using the Coulter counting method [29].
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in each different case. Once « has been identified, d;°
and ¢;" can then be calculated for the 2-D distribution.
For lognormal distributions, the following simple rela-
tionships will always apply:

oP=g¢ (15)
In di°=In o« +1In d, (16)

Fig. 14(a) and (b) show histograms of 2-D particle
size data for two simulated 10 000 particle populations,
obtained in this manner, using the log-normal statistics
of the F-600 and F-1000 SiC powders (Table 1). Notice
that neither of the distributions are symmetrical about
d,, but have a slight tail to the right, in accordance with
a log-normal distribution.

Fig. 15(a) and (b) shows the two simulated mi-
crostructures at the same magnification. The larger
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Fig. 14. (a) Histogram showing apparent 2-D particle size distribution
expected for a random planar section through a simulated 10 000
particle population, according to log-normal statistics of F-600 SiC
powder (dy=9.4 pm, dz°=62 ym, «=0.655, In o,=0.165). (b)
Histogram showing apparent 2-D particle size distribution expected
for a random planar section through a simulated 10 000 particle
population, according to log-normal statistics of F-1000 SiC powder
d,=4.9 pm, di° =33 pm,x = 0.665, In ¢, =0.210).
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Fig. 15. (a) Portion of simulated microstructure that contained 10 000
(F-600) SiC powder particles (d, =9.4 pm, dz® =6.2 pm,x = 0.655,
In ¢, =0.165). Random, non-overlapping particle placement, f, = 0.
(b) Portion of simulated microstructure that contained 10 000 (F-
1000) SiC powder particles (d, = 4.9 pm, dz°=3.3 pm, o« = 0.665, In
o, =0.210). Random, non-overlapping particle placement, f. = 0.

variability in particle sizes of the F-1000 powder vs. the
F-600 powder is quite apparent. Fig. 16 shows two
MSAAF plots obtained from the F-600 and F- 1000
simulated microstructures, using random, non-interact-
ing particle placement. Each microstructure contained
10 000 particles at an area fraction of A, = 20%, which
was chosen to represent a typical MMC volume frac-
tion. The figure shows that there is negligible difference
between the two MSAAF curves. Each curve has a
slope of — 1.0 over the linear portion, and have similar



60 J.E. Spowart et al. / Materials Science and Engineering A307 (2001) 51-66

values for Ly (0.01)/d, (~ 1 x 10%). The effect of differ-
ent particle size distributions is therefore expected to be
insignificant at the levels of o, expected in practice.

4. Multi-scale analysis of area fraction in experimental
discontinuously reinforced metallic matrix composite
microstructures

The preceding sections have dealt exclusively with
simulated microstructures. In this section, the MSAAF
analysis is extended to real microstructures, obtained
from metallographic sectioning of experimental discon-
tinuously reinforced aluminum (DRA) materials. The
two materials chosen for comparison were produced
under identical (P/M) processing conditions [33] and
comprised a 2080-Al matrix with 20 vol% of either
F-600 or F-1000 SiC particles as reinforcement. In
order to obtain high-resolution digital optical micro-
graphs of the two DRA materials after sectioning and
polishing, a montage technique [34] was employed,
whereby multiple adjacent sub-images were captured
digitally and reconstructed into one final image, using a
commercial desktop package.’ This effectively de-cou-
pled the available resolution and the field-of-view,
which enabled pixel re-sampling down to small values

of Q/d,.
4.1. Image processing

A sequence of image processing filters [35] was em-
ployed in order to obtain consistent binary (black and

101 LR | AR | A | T """:
SN —e—F-600 SiC (random, A, = 20%) |
« | —=—F-1000 siC (random, A, = 20%) ||

Ol A

0.1 |

0.01
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Fig. 16. MSAAF plot for two random, non-overlapping distributions
of particles, simulating discontinuously reinforced MMC materials
made with the F-600 and F-1000 SiC powders. (N =10 000, 4,=
20%). Note that the quilt size, Q is normalized with respect to the
geometric mean diameter, d,, and that the two curves overlap.

5 Adobe Photoshop 5.5.

white) images from the digital optical micrographs of
experimental DRA microstructures. Fig. 17(a)—(e)
show the sequence of operations carried out on a
portion of such an image. The resulting binary image
(i.e. Fig. 17(e)) is then used as an input image for the
MSAAF re-sampling procedure (Section 2.2).

4.2. Multi-scale analysis of area fraction of
experimental discontinuously reinforced aluminum
microstructures

Fig. 18 compares the MSAAF plot obtained from the
as image-processed experimental DRA microstructure
shown in Fig. 17(e) (4;=20%, F-600 SiC reinforce-
ment) with that of a simulation using random, non-in-
teracting particle placement, (f,=0, 4;=20%, F-600
SiC particle size distribution). Note that in both cases
the quilt size, Q, is normalized with respect to the
geometric mean of the particle size distribution, d,.

The figure shows that although both MSAAF plots
show a slope of — 1 in the linear region, the experimen-
tal DRA microstructure has a higher Ly (0.01)/d, than
the simulation, i.e., it is more heterogencous. Using a
value of d, = 9.4 um for the F-600 SiC powder, we can
extrapolate to a value of Ly (0.01)~ 1.2 mm in the
DRA material, versus a value of Ly (0.01) ~0.74 mm
in the random simulation.

Fig. 19(a) and (b) are digital optical micrographs that
compare regions of the experimental F-600 and F-1000
DRA microstructures. Although the two micrographs
are shown at different magnifications, the fields of view
are equivalent, due to the different mean particle sizes
in each material. Qualitatively, there is increased het-
erogeneity in the distribution of the reinforcement in
the F-1000 DRA, when compared to the F-600 mate-
rial, and evidence of extensive clustering of the parti-
cles. In order to quantify the level of heterogeneity in
this microstructure, an MSAAF plot obtained from the
experimental F-1000 DRA material is compared with
that of a simulation using random, non-interacting
particle placement, ( f. =0, 4; = 20%, F-1000 SiC parti-
cle size distribution), Fig. 20.

The slope of the MSAAF plot for the F-1000 DRA
material in the measured range is much shallower than
that of the F-600 DRA, i.e. —0.67 versus — 1.0. This
implies a greater level of heterogeneity, since the F-1000
material shows a greater variability in local area frac-
tion than the F-600 material over the measured length
scales. The homogeneous length scale is also increased,
ie., d,=4.9 pm for the F-1000 SiC powder, therefore
Ly (0.01) ~ 3.6 mm in the F-600 DRA compared with
Ly (0.01)~ 1.2 mm in the F-600 DRA. It should be
noted, however, that we are extrapolating significantly
from the measured data in the F-600 case. Even though
the initially lower slope suggests stronger heterogeneity
than the F-600 material at length scales below ~ 50 d,,
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Fig. 17. (a)—(e): Sequential image processing operations [35] carried out on a 512 x 512 pixel digital optical micrograph of a 20 vol% F-600 SiC
reinforced aluminum MMC; (a) original micrograph, (b) ‘unsharp mask’ applied, (c) ‘Haralick 2’ filter applied, (d) median filter (2 pixel radius)

applied, and (e) final thresholded (binary) image.

it is possible that the curve may eventually assume a
slope of — 1.0 at larger quilt sizes. This phenomenon
was clearly demonstrated in the simulated random,
non-overlapping microstructures with increasing de-
grees of clustering (Fig. 8), where the slope of the
MSAAF curves became — 1.0 at length scales much
larger than the scale of the clusters.

4.3. Modeling of experimental discontinuously
reinforced aluminum microstructures

Since the slope of the MSAAF plot for the experi-
mental F-600 DRA material is — 1.0, it is possible to
model this microstructure using the clustering factor, £,
as a single fitting parameter. Whilst maintaining the
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Fig. 18. MSAAF plot comparing an experimental F-600 DRA mi-
crostructure and a simulated microstructure using F-600 SiC particle
size distribution (d, = 9.4 pm) and a random, non-overlapping parti-
cle placement routine (f, =0). In each case, 4;=20%.

same A; and particle size distribution, the clustering
factor is increased from a random, non-interacting
case (f,=0) until the modeled curve lies on top of
the experimental curve. For the F-600 DRA mate-
rial, this occurs with a clustering factor of f,=0.3,
suggesting that the F-600 DRA material is slightly
clustered, as shown in Fig. 21.

Fig. 22(a) and (b) compare images of the experi-
mental F-600 DRA microstructure with the simulated
microstructure (f,=0.3), at the same magnification.
The only significant difference appears at the smaller
length scales, i.e. below the mean particle size, d,. In
the experimental DRA microstructure, a greater
number of smaller particles have been sectioned. This
may account for the slight difference between the
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Fig. 20. MSAAF plot comparing the experimental F-1000 DRA
microstructure and a simulated microstructure using F-1000 SiC
particle size distribution (d, = 4.9 pm) with a random, non-overlap-
ping particle placement routine (f, =0). In each case, 4;=20%.

shapes of the MSAAF plots, at quilt sizes smaller
than Q/d,.

The simulated microstructures produced using the
techniques described in Section 2.1 and Section 2.4
all have MSAAF plots with slopes of —1.0. It is
postulated that the shallower slope (—0.67) mea-
sured for the F-1000 DRA material may be indica-
tive of multi-scalar (i.e. fractal [36]) microstructural
phenomena, e.g. the formation of ‘super-clusters’,
containing clusters of clusters. This behavior is not
captured in the simple modeling scheme, and so no
attempt will be made to model the F-1000 mi-
crostructure. Future work, focusing on producing
model microstructures using a cellular automaton
multi-scalar approach may be fruitful in this respect.

Fig. 19. Digital optical micrographs comparing (a) F-600 and (b) F-1000 DRA microstructures. Notice increased spatial heterogeneity of
reinforcement distribution in F-1000 DRA, (relative to F-600 material), and evidence of extensive particle clustering.
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Fig. 21. MSAAF plot comparing the experimental F-600 DRA
material and simulated microstructures using the F-600 SiC particle

size distribution (d,=9.4
f.=0.3. In each case, A,=

5. Relevance of multi-
predicting mechanical

um) with clustering factors f,=0 and
20%.

scale analysis of area fraction for
properties of discontinuously

reinforced metallic matrix composite materials

5.1. Design allowables

Material property values that are specified for com-
ponent design purposes are typically chosen to be min-
imum expected values, obtained via strict statistical

analyses of property

data from tests carried out on a

large number of identical specimens. Property values

obtained in this way

are called design allowables [37].

In this respect, the amount of inherent variability in
material data can sometimes be more important in

specifying the allowa

ble than the mean value of the

property, as illustrated in Fig. 23 for a hypothetical

material property.
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Fig. 23. Plot showing

material property (arbitrary units)

reduction in design allowable due to increased

variability in a hypothetical mechanical property. Material (1) has a

higher mean property

than material (2) but the 99% design allowable

for material (1) is lower, due to larger spread in the data.

Mechanical properties in discontinuously reinforced

MMCs typically
[38,39]. However,
in these material

show a fair amount of variation
it seems reasonable to conjecture that
s, properties such as tensile strength

and ductility (and possibly also fatigue and fracture
toughness) should be correlated in a deterministic way

with the volume

fraction, distribution, size and mor-

phology of reinforcement. The variability observed for
composite material properties with identical volume
fractions might therefore be attributed to variability in

microstructure, p
of the reinforcing

articularly in the spatial distribution
particles. By using the MSAAF tech-

nique, we have carefully shown that the amount of
variability in local particle volume fraction (as charac-

terized by a4 JAp)

is not only a function of the degree of

clustering but it also varies with length scale (quilt size),

as demonstrated

by the significant horizontal shift in
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Fig. 22. Comparing (a) experimental and (b) simulated DRA microstructures at the same magnification. Simulated microstructure has clustering

factor, f, = 0.3 (4;=20%).
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the MSAAF curves shown in Fig. 8. It is therefore
important to consider over what length scale (or scales)
each different failure mechanism is likely to be
operating.

Plane-strain fracture toughness (K;-) is one such
material property that shows a much larger amount of
scatter in discontinuously reinforced MMCs than is
typically seen in the monolithic metals. For example,
variability in K;- data for DRA materials containing 20
vol% SiC can be as high as 30% [40], whereas variabil-
ity in K- data for a high-strength Al alloy (compact
tension specimen geometry) has been reported as low as
3% [41,42]. An obvious candidate length scale for the
fracture mechanism might be the size of the plastic zone
(R,) ahead of the advancing crack tip. An upper limit
[43] for R, is given by:

K 2
R, zo.155<IC> ) (17)

Oy

Using a value [33] of oy =522 MPa and a typical
value [44] of Kj-=15 MPaﬂ, we obtain an estimate
of R, ~ 130 um for the F-600 DRA material. Referring
to Fig. 18, the point-to-point variation in area fraction
(i.e. o4 /Af) at this length scale would be around 9% in
this material. Similarly, using K;- =15 MPaf for the
F-1000 DRA material (oy =539 MPa [33], R,~ 120
pum), the point-to-point variation in area fraction is
around 11% (Fig. 20). It is proposed that this measured
variability in area fraction may contribute (at least in
part) into the measured variability in K-, assuming
that a deterministic relationship does exist between
fracture toughness and reinforcement volume fraction.
This therefore provides a tentative link between a mi-
croscale phenomenon (i.e. variation in area fraction at
the length scale of the plastic zone size) and the macro-
scopic property, K. Additionally, the slight trend of a
higher variability in area fraction for the F-1000 mate-
rial may translate into a more conservative value for
the design allowable than for the F-600 material, even
though the F-1000 material may possess a higher mean
toughness.®

Unfortunately, due to overwhelming scatter [45] in
the experimental data for measured K¢ values, no clear
empirical relationship has been established between
fracture toughness and reinforcement volume fraction.
Fracture toughness can not therefore be predicted a
priori for a DRA material that has a known variability
in area fraction. However, through improved powder
blending techniques or other methods [46] it should be
possible to improve the spatial distribution of reinforce-
ment particles throughout the microstructure, (i.e. elim-
inate particle clustering and so reduce L), and gain an

¢ Although K¢ data are not available, the tensile yield and ultimate
strengths were measured [33] to be slightly higher in the F-1000
material than in the F-600 material.

improvement in K. It is proposed that only by the
reduction of microstructural heterogeneity at the rele-
vant length scale can we hope to improve the fracture
properties of these materials. Future work will concen-
trate on correlating K- data measured in DRA materi-
als containing different particle spatial distributions,
with relevant microstructural parameters obtained from
the MSAAF technique.

5.2. Matrix coating of particles

In an effort to produce discontinuously reinforced
MMCs with enhanced levels of homogeneity, an exper-
imental program has recently been initiated whereby
ceramic reinforcement particles will be coated with a
continuous layer of matrix alloy prior to incorporation
into fully dense composite materials [46]. The purpose
of the coating is to increase the separation between
neighboring particles, and so preclude particle—particle
contact. Matrix coating of particles (MCP) can be
carried out by a number of processes, including fast
fluidized-bed chemical vapor deposition [47], electro-
chemical plating and non-aqueous polyol salt deposi-
tion techniques [48]. A strong potential exists for
increasing the homogeneity of particle spatial distribu-
tions in discontinuously reinforced MMCs by the use of
these techniques, along with an expected enhancement
in fracture properties. Furthermore, the process of uni-
formly coating ceramic particles with matrix material is
attractive not only in traditional P/M billet materials,
but also in direct powder forging [49] and pressure-
infiltration cast [50] products.

It is possible to model the effect on the overall
microstructural homogeneity of adding a layer of ma-
trix material to each particle, by using the computer
code to simulate MCP-DRA microstructures. The
code is modified to assign a fixed exclusion distance
(equal to twice the coating thickness) around each
particle as it is placed in the microstructure. Particles
are placed using the same rules as before, except in the
MCP-DRA simulation, no particles will be placed with
less than the minimum edge-to-edge separation allowed
by the exclusion distance.”

Fig. 24(a) and (b) shows the results of such treat-
ments applied to the F-600 and F-1000 simulated mi-
crostructures obtained before (Fig. 15(a) and (b)). The
particles were modeled as having a matrix coating
thickness of 1.0 pm, and an overall area fraction of
20%. From the simulation, we can see a greater effect
on the homogeneity of the distribution for the smaller
(F-1000) SiC than the F-600 SiC powder, simply due to
the fixed thickness of the coating layer. Thus the MCP

7 The 2-D jamming limit of A,=0.547 will still be in effect, but
here it refers to an effective area fraction comprising the total particle
area fraction plus the area fraction from the matrix coating itself.
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technique is predicted to make the greatest improve-
ments on DRA materials containing smaller reinforc-
ing particles, for a given matrix coating thickness.
Indeed, the technique may be invaluable in the effort
to produce discontinuously reinforced MMCs with
very small (<1 pm diameter) reinforcements (B.S.
Majum dar, personal communication) without intro-
ducing particle clusters.
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Fig. 24. (a) Portion of a simulated MCP—DRA microstructure (4, =
20%) that contained 10 000 F-600 SiC powder particles (d, = 9.4 um)
with a matrix coating layer thickness of 1.0 um. (Random, non-over-
lapping particle placement, f. = 0.) (b) Portion of a simulated MCP—
DRA microstructure (4= 20%) that contained 10 000 F-1000 SiC
powder particles (d, = 4.9 um) with a matrix coating layer thickness
of 1.0 pm. (Random, non-overlapping particle placement, f. =0.)

6. Conclusions

We have demonstrated that by using the MSAAF
technique, it is possible to assign a new microstruc-
tural parameter, the homogeneous length scale, Ly, to
distributed heterogeneous systems. This parameter de-
scribes the statistical variation in the area fraction of
the distributed second phase. The length scales that
can be interrogated with the MSAAF technique range
from below the particle diameter up to the size of the
specimen, although the information obtained at length
scales below the particle diameter is somewhat lim-
ited. Statistical information of this sort is obtained
without resorting to tessellation techniques or relying
on manual separation of the particles, therefore an
improvement in performance over these techniques is
anticipated. The results from MSAAF carried out on
low-A, particle ensembles agree favorably with analyt-
ical expressions for Poisson distributions of points in
a plane, validating the technique. The technique also
correctly predicts the 2-D “jamming limit” ap-
proached with high-4; random, non-overlapping syn-
thetic microstructures.

When the MSAAF technique is used to characterize
two different experimental DRA materials (Al 2080/
SiC/20, containing either F-600 or F-1000 SiC parti-
cles), it correctly identifies the relative amounts of
spatial heterogeneity observed in the different mi-
crostructures. This suggests that the technique may be
useful for quality assurance and process control of
DRA microstructures in the future.

The ability to characterize the amount of spatial
variability in distributed multi-phase systems, such as
particulate-reinforced MMCs, is the first step towards
establishing a correlation between microstructure and
mechanical properties in these systems. Experiments
are planned in which the MSAAF analysis will be
correlated with the results of DRA fracture toughness
tests, using samples with different degrees of spatial
heterogeneity. It is hoped that these experiments will
yield correlations between the statistical distribution
of local volume fractions and measured fracture
toughness data.
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